home *** CD-ROM | disk | FTP | other *** search
/ Interactive Algebra & Tri…f Guided Study Companion / Interactive Algebra and Trigonometry - A Self-Guided Study Companion.iso / tutor / chap_6 / 6-1-1.tut next >
Unknown  |  1996-10-19  |  7.2 KB

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text


This file was not able to be converted.
This format is not currently supported by dexvert.

ConfidenceProgramDetectionMatch TypeSupport
1% dexvert Eclipse Tutorial (other/eclipseTutorial) ext Unsupported
1% dexvert JuggleKrazy Tutorial (other/juggleKrazyTutorial) ext Unsupported
100% file data default
100% gt2 Kopftext: 'TUTOR 06' default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | ea 1b 00 00 f0 00 00 00 |TUTOR 06|........|
|00000010| 43 68 61 70 74 65 72 20 | 36 20 20 54 72 69 67 6f |Chapter |6 Trigo|
|00000020| 6e 6f 6d 65 74 72 79 0d | 0b 00 16 61 36 2d 69 6e |nometry.|...a6-in|
|00000030| 64 65 78 16 14 63 68 61 | 70 37 2e 68 69 14 30 14 |dex..cha|p7.hi.0.|
|00000040| 31 14 37 38 14 31 38 14 | 0d 0a 00 0d 0a 00 20 20 |1.78.18.|...... |
|00000050| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000060| 10 61 36 2d 70 72 65 0e | 70 72 65 69 6e 74 72 6f |.a6-pre.|preintro|
|00000070| 2d 36 0e 43 68 61 70 74 | 65 72 20 57 61 72 6d 20 |-6.Chapt|er Warm |
|00000080| 55 70 0f 0d 0a 00 0d 0b | 00 20 20 20 20 20 0e 73 |Up......|. .s|
|00000090| 36 2d 31 0e 53 65 63 74 | 69 6f 6e 20 36 2e 31 0f |6-1.Sect|ion 6.1.|
|000000a0| 20 20 41 6e 67 6c 65 73 | 20 61 6e 64 20 54 68 65 | Angles| and The|
|000000b0| 69 72 20 4d 65 61 73 75 | 72 65 0d 0a 00 0d 0b 00 |ir Measu|re......|
|000000c0| 20 20 20 20 20 10 61 36 | 2d 32 2d 31 0e 73 36 2d | .a6|-2-1.s6-|
|000000d0| 32 0e 53 65 63 74 69 6f | 6e 20 36 2e 32 0f 20 20 |2.Sectio|n 6.2. |
|000000e0| 52 69 67 68 74 20 54 72 | 69 61 6e 67 6c 65 20 54 |Right Tr|iangle T|
|000000f0| 72 69 67 6f 6e 6f 6d 65 | 74 72 79 0d 0a 00 0d 0b |rigonome|try.....|
|00000100| 00 20 20 20 20 20 10 61 | 36 2d 33 2d 31 0e 73 36 |. .a|6-3-1.s6|
|00000110| 2d 33 0e 53 65 63 74 69 | 6f 6e 20 36 2e 33 0f 20 |-3.Secti|on 6.3. |
|00000120| 20 54 72 69 67 6f 6e 6f | 6d 65 74 72 69 63 20 46 | Trigono|metric F|
|00000130| 75 6e 63 74 69 6f 6e 73 | 20 6f 66 20 41 6e 79 20 |unctions| of Any |
|00000140| 41 6e 67 6c 65 0d 0a 00 | 0d 0b 00 20 20 20 20 20 |Angle...|... |
|00000150| 10 61 36 2d 34 2d 31 0e | 73 36 2d 34 0e 53 65 63 |.a6-4-1.|s6-4.Sec|
|00000160| 74 69 6f 6e 20 36 2e 34 | 0f 20 20 47 72 61 70 68 |tion 6.4|. Graph|
|00000170| 73 20 6f 66 20 53 69 6e | 65 20 61 6e 64 20 43 6f |s of Sin|e and Co|
|00000180| 73 69 6e 65 20 46 75 6e | 63 74 69 6f 6e 73 0d 0a |sine Fun|ctions..|
|00000190| 00 0d 0b 00 20 20 20 20 | 20 10 61 36 2d 35 2d 31 |.... | .a6-5-1|
|000001a0| 0e 73 36 2d 35 0e 53 65 | 63 74 69 6f 6e 20 36 2e |.s6-5.Se|ction 6.|
|000001b0| 35 0f 20 20 47 72 61 70 | 68 73 20 6f 66 20 4f 74 |5. Grap|hs of Ot|
|000001c0| 68 65 72 20 54 72 69 67 | 6f 6e 6f 6d 65 74 72 69 |her Trig|onometri|
|000001d0| 63 20 46 75 6e 63 74 69 | 6f 6e 73 0d 0a 00 0d 0b |c Functi|ons.....|
|000001e0| 00 20 20 20 20 20 10 61 | 36 2d 36 2d 31 0e 73 36 |. .a|6-6-1.s6|
|000001f0| 2d 36 0e 53 65 63 74 69 | 6f 6e 20 36 2e 36 0f 20 |-6.Secti|on 6.6. |
|00000200| 20 49 6e 76 65 72 73 65 | 20 54 72 69 67 6f 6e 6f | Inverse| Trigono|
|00000210| 6d 65 74 72 69 63 20 46 | 75 6e 63 74 69 6f 6e 73 |metric F|unctions|
|00000220| 0d 0a 00 0d 0b 00 20 20 | 20 20 20 10 61 36 2d 37 |...... | .a6-7|
|00000230| 2d 31 0e 73 36 2d 37 0e | 53 65 63 74 69 6f 6e 20 |-1.s6-7.|Section |
|00000240| 36 2e 37 0f 20 20 41 70 | 70 6c 69 63 61 74 69 6f |6.7. Ap|plicatio|
|00000250| 6e 73 20 61 6e 64 20 4d | 6f 64 65 6c 73 0d 0a 00 |ns and M|odels...|
|00000260| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00000270| 20 20 20 20 20 10 61 36 | 2d 72 2d 31 0e 78 36 2d | .a6|-r-1.x6-|
|00000280| 72 0e 52 65 76 69 65 77 | 20 45 78 65 72 63 69 73 |r.Review| Exercis|
|00000290| 65 73 20 66 6f 72 20 43 | 68 61 70 74 65 72 20 36 |es for C|hapter 6|
|000002a0| 0f 0d 0a 00 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |....... | |
|000002b0| 20 20 20 20 20 20 20 20 | 20 10 61 36 2d 70 6f 73 | | .a6-pos|
|000002c0| 74 0e 70 6f 73 74 69 6e | 74 72 6f 2d 36 0e 43 68 |t.postin|tro-6.Ch|
|000002d0| 61 70 74 65 72 20 50 6f | 73 74 2d 54 65 73 74 0f |apter Po|st-Test.|
|000002e0| 0d 0a 00 53 65 63 74 69 | 6f 6e 20 36 2e 31 20 20 |...Secti|on 6.1 |
|000002f0| 41 6e 67 6c 65 73 20 61 | 6e 64 20 54 68 65 69 72 |Angles a|nd Their|
|00000300| 20 4d 65 61 73 75 72 65 | 0d 0b 00 46 6f 72 20 6d | Measure|...For m|
|00000310| 6f 72 65 20 70 72 61 63 | 74 69 63 65 3a 0d 0a 00 |ore prac|tice:...|
|00000320| 0d 0a 00 20 20 20 20 20 | 10 61 36 2d 31 2d 33 0e |... |.a6-1-3.|
|00000330| 78 36 2d 31 0e 54 75 74 | 6f 72 69 61 6c 20 45 78 |x6-1.Tut|orial Ex|
|00000340| 65 72 63 69 73 65 73 0f | 0d 0a 00 20 20 20 20 20 |ercises.|... |
|00000350| 10 61 36 2d 31 2d 32 0e | 65 36 2d 31 0e 47 75 69 |.a6-1-2.|e6-1.Gui|
|00000360| 64 65 64 20 45 78 61 6d | 70 6c 65 73 0f 0d 0a 00 |ded Exam|ples....|
|00000370| 0d 0a 00 54 6f 70 69 63 | 73 20 66 6f 72 20 65 78 |...Topic|s for ex|
|00000380| 70 6c 6f 72 61 74 69 6f | 6e 3a 0d 0a 00 0d 0a 00 |ploratio|n:......|
|00000390| 20 20 20 20 20 0e 73 36 | 2d 31 2d 31 0e 41 6e 67 | .s6|-1-1.Ang|
|000003a0| 6c 65 73 0f 0d 0a 00 20 | 20 20 20 20 0e 73 36 2d |les.... | .s6-|
|000003b0| 31 2d 32 0e 44 65 67 72 | 65 65 20 4d 65 61 73 75 |1-2.Degr|ee Measu|
|000003c0| 72 65 0f 0d 0a 00 20 20 | 20 20 20 0e 73 36 2d 31 |re.... | .s6-1|
|000003d0| 2d 33 0e 43 6c 61 73 73 | 69 66 79 69 6e 67 20 41 |-3.Class|ifying A|
|000003e0| 6e 67 6c 65 73 0f 0d 0a | 00 20 20 20 20 20 0e 73 |ngles...|. .s|
|000003f0| 36 2d 31 2d 34 0e 52 65 | 6c 61 74 69 6f 6e 73 68 |6-1-4.Re|lationsh|
|00000400| 69 70 20 62 65 74 77 65 | 65 6e 20 54 77 6f 20 41 |ip betwe|en Two A|
|00000410| 6e 67 6c 65 73 0f 0d 0a | 00 20 20 20 20 20 0e 73 |ngles...|. .s|
|00000420| 36 2d 31 2d 35 0e 52 61 | 64 69 61 6e 20 4d 65 61 |6-1-5.Ra|dian Mea|
|00000430| 73 75 72 65 0f 0d 0a 00 | 20 20 20 20 20 0e 73 36 |sure....| .s6|
|00000440| 2d 31 2d 36 0e 43 6f 6e | 76 65 72 73 69 6f 6e 20 |-1-6.Con|version |
|00000450| 6f 66 20 41 6e 67 6c 65 | 20 4d 65 61 73 75 72 65 |of Angle| Measure|
|00000460| 0f 0d 0a 00 20 20 20 20 | 20 0e 73 36 2d 31 2d 37 |.... | .s6-1-7|
|00000470| 0e 41 70 70 6c 69 63 61 | 74 69 6f 6e 73 0f 0d 0a |.Applica|tions...|
|00000480| 00 53 65 63 74 69 6f 6e | 20 36 2e 31 20 20 41 6e |.Section| 6.1 An|
|00000490| 67 6c 65 73 20 61 6e 64 | 20 54 68 65 69 72 20 4d |gles and| Their M|
|000004a0| 65 61 73 75 72 65 0d 0b | 00 41 6e 20 12 31 61 6e |easure..|.An .1an|
|000004b0| 67 6c 65 12 30 20 69 73 | 20 64 65 74 65 72 6d 69 |gle.0 is| determi|
|000004c0| 6e 65 64 20 62 79 20 72 | 6f 74 61 74 69 6e 67 20 |ned by r|otating |
|000004d0| 61 20 72 61 79 20 28 68 | 61 6c 66 2d 6c 69 6e 65 |a ray (h|alf-line|
|000004e0| 29 20 61 62 6f 75 74 20 | 69 74 73 20 65 6e 64 70 |) about |its endp|
|000004f0| 6f 69 6e 74 2e 0d 0a 00 | 54 68 65 20 73 74 61 72 |oint....|The star|
|00000500| 74 69 6e 67 20 70 6f 73 | 69 74 69 6f 6e 20 6f 66 |ting pos|ition of|
|00000510| 20 74 68 65 20 72 61 79 | 20 69 73 20 63 61 6c 6c | the ray| is call|
|00000520| 65 64 20 74 68 65 20 12 | 31 69 6e 69 74 69 61 6c |ed the .|1initial|
|00000530| 20 73 69 64 65 12 30 20 | 6f 66 20 74 68 65 20 61 | side.0 |of the a|
|00000540| 6e 67 6c 65 2c 0d 0a 00 | 61 6e 64 20 74 68 65 20 |ngle,...|and the |
|00000550| 70 6f 73 69 74 69 6f 6e | 20 61 66 74 65 72 20 72 |position| after r|
|00000560| 6f 74 61 74 69 6f 6e 20 | 69 73 20 63 61 6c 6c 65 |otation |is calle|
|00000570| 64 20 74 68 65 20 12 31 | 74 65 72 6d 69 6e 61 6c |d the .1|terminal|
|00000580| 20 73 69 64 65 12 30 2c | 20 61 73 20 73 68 6f 77 | side.0,| as show|
|00000590| 6e 20 62 65 6c 6f 77 2e | 0d 0a 00 0d 0a 00 14 74 |n below.|.......t|
|000005a0| 2d 37 2d 31 2d 31 2e 61 | 74 14 33 30 14 39 14 32 |-7-1-1.a|t.30.9.2|
|000005b0| 35 14 38 14 0d 0a 00 0d | 0a 00 0d 0a 00 0d 0a 00 |5.8.....|........|
|000005c0| 0d 0a 00 0d 0a 00 54 68 | 65 20 65 6e 64 70 6f 69 |......Th|e endpoi|
|000005d0| 6e 74 20 6f 66 20 74 68 | 65 20 72 61 79 20 69 73 |nt of th|e ray is|
|000005e0| 20 63 61 6c 6c 65 64 20 | 74 68 65 20 12 31 76 65 | called |the .1ve|
|000005f0| 72 74 65 78 12 30 20 6f | 66 20 74 68 65 20 61 6e |rtex.0 o|f the an|
|00000600| 67 6c 65 2e 20 20 41 6e | 20 61 6e 67 6c 65 20 69 |gle. An| angle i|
|00000610| 6e 0d 0a 00 77 68 69 63 | 68 20 74 68 65 20 76 65 |n...whic|h the ve|
|00000620| 72 74 65 78 20 69 73 20 | 61 74 20 74 68 65 20 6f |rtex is |at the o|
|00000630| 72 69 67 69 6e 20 61 6e | 64 20 74 68 65 20 69 6e |rigin an|d the in|
|00000640| 69 74 69 61 6c 20 73 69 | 64 65 20 63 6f 69 6e 63 |itial si|de coinc|
|00000650| 69 64 65 73 20 77 69 74 | 68 20 74 68 65 20 0d 0a |ides wit|h the ..|
|00000660| 00 70 6f 73 69 74 69 76 | 65 20 11 33 78 11 31 2d |.positiv|e .3x.1-|
|00000670| 61 78 69 73 20 69 73 20 | 73 61 69 64 20 74 6f 20 |axis is |said to |
|00000680| 62 65 20 69 6e 20 12 31 | 73 74 61 6e 64 61 72 64 |be in .1|standard|
|00000690| 20 70 6f 73 69 74 69 6f | 6e 12 30 2e 20 20 12 31 | positio|n.0. .1|
|000006a0| 50 6f 73 69 74 69 76 65 | 20 61 6e 67 6c 65 73 12 |Positive| angles.|
|000006b0| 30 20 61 72 65 20 0d 0a | 00 67 65 6e 65 72 61 74 |0 are ..|.generat|
|000006c0| 65 64 20 62 79 20 63 6f | 75 6e 74 65 72 63 6c 6f |ed by co|unterclo|
|000006d0| 63 6b 77 69 73 65 20 72 | 6f 74 61 74 69 6f 6e 2c |ckwise r|otation,|
|000006e0| 20 61 6e 64 20 12 31 6e | 65 67 61 74 69 76 65 20 | and .1n|egative |
|000006f0| 61 6e 67 6c 65 73 12 30 | 20 62 79 20 63 6c 6f 63 |angles.0| by cloc|
|00000700| 6b 77 69 73 65 20 0d 0a | 00 72 6f 74 61 74 69 6f |kwise ..|.rotatio|
|00000710| 6e 2e 20 20 4e 6f 72 6d | 61 6c 6c 79 20 77 65 20 |n. Norm|ally we |
|00000720| 75 73 65 20 47 72 65 65 | 6b 20 6c 65 74 74 65 72 |use Gree|k letter|
|00000730| 73 20 11 34 61 11 31 2c | 20 11 34 62 11 31 2c 20 |s .4a.1,| .4b.1, |
|00000740| 61 6e 64 20 11 34 74 11 | 31 2c 20 6f 72 20 75 70 |and .4t.|1, or up|
|00000750| 70 65 72 63 61 73 65 20 | 6c 65 74 74 65 72 73 20 |percase |letters |
|00000760| 11 33 41 11 31 2c 20 0d | 0a 00 11 33 42 11 31 2c |.3A.1, .|...3B.1,|
|00000770| 20 6f 72 20 11 33 43 20 | 11 31 74 6f 20 6c 61 62 | or .3C |.1to lab|
|00000780| 65 6c 20 61 6e 67 6c 65 | 73 2e 0d 0a 00 53 65 63 |el angle|s....Sec|
|00000790| 74 69 6f 6e 20 36 2e 31 | 20 20 41 6e 67 6c 65 73 |tion 6.1| Angles|
|000007a0| 20 61 6e 64 20 54 68 65 | 69 72 20 4d 65 61 73 75 | and The|ir Measu|
|000007b0| 72 65 0d 0b 00 54 68 65 | 20 12 31 6d 65 61 73 75 |re...The| .1measu|
|000007c0| 72 65 20 6f 66 20 61 6e | 20 61 6e 67 6c 65 12 30 |re of an| angle.0|
|000007d0| 20 69 73 20 64 65 74 65 | 72 6d 69 6e 65 64 20 62 | is dete|rmined b|
|000007e0| 79 20 74 68 65 20 61 6d | 6f 75 6e 74 20 6f 66 20 |y the am|ount of |
|000007f0| 72 6f 74 61 74 69 6f 6e | 20 66 72 6f 6d 20 74 68 |rotation| from th|
|00000800| 65 20 0d 0a 00 69 6e 69 | 74 69 61 6c 20 74 6f 20 |e ...ini|tial to |
|00000810| 74 68 65 20 74 65 72 6d | 69 6e 61 6c 20 73 69 64 |the term|inal sid|
|00000820| 65 2e 20 20 54 68 65 20 | 6d 6f 73 74 20 63 6f 6d |e. The |most com|
|00000830| 6d 6f 6e 20 75 6e 69 74 | 20 6f 66 20 61 6e 67 6c |mon unit| of angl|
|00000840| 65 20 6d 65 61 73 75 72 | 65 20 69 73 20 74 68 65 |e measur|e is the|
|00000850| 20 0d 0a 00 20 20 20 20 | 20 20 20 20 20 20 20 20 | ... | |
|00000860| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000870| 20 20 11 34 6f 20 20 20 | 20 20 20 20 20 20 20 20 | .4o | |
|00000880| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000890| 20 20 11 31 12 31 11 34 | 6f 11 31 12 30 0d 0b 00 | .1.1.4|o.1.0...|
|000008a0| 12 31 64 65 67 72 65 65 | 12 30 2c 20 64 65 6e 6f |.1degree|.0, deno|
|000008b0| 74 65 64 20 62 79 20 74 | 68 65 20 73 79 6d 62 6f |ted by t|he symbo|
|000008c0| 6c 20 20 2e 20 20 41 20 | 6d 65 61 73 75 72 65 20 |l . A |measure |
|000008d0| 6f 66 20 12 31 6f 6e 65 | 20 64 65 67 72 65 65 20 |of .1one| degree |
|000008e0| 28 31 20 29 12 30 20 69 | 73 20 65 71 75 69 76 61 |(1 ).0 i|s equiva|
|000008f0| 6c 65 6e 74 20 0d 0a 00 | 74 6f 20 31 2f 33 36 30 |lent ...|to 1/360|
|00000900| 20 6f 66 20 61 20 63 6f | 6d 70 6c 65 74 65 20 72 | of a co|mplete r|
|00000910| 65 76 6f 6c 75 74 69 6f | 6e 20 61 62 6f 75 74 20 |evolutio|n about |
|00000920| 74 68 65 20 76 65 72 74 | 65 78 2e 20 20 48 69 73 |the vert|ex. His|
|00000930| 74 6f 72 69 63 61 6c 6c | 79 2c 20 66 72 61 63 74 |toricall|y, fract|
|00000940| 69 6f 6e 61 6c 20 0d 0a | 00 70 61 72 74 73 20 6f |ional ..|.parts o|
|00000950| 66 20 64 65 67 72 65 65 | 73 20 77 65 72 65 20 65 |f degree|s were e|
|00000960| 78 70 72 65 73 73 65 64 | 20 69 6e 20 12 31 6d 69 |xpressed| in .1mi|
|00000970| 6e 75 74 65 73 12 30 20 | 61 6e 64 20 12 31 73 65 |nutes.0 |and .1se|
|00000980| 63 6f 6e 64 73 12 30 2c | 20 64 65 6e 6f 74 65 64 |conds.0,| denoted|
|00000990| 20 62 79 20 74 68 65 20 | 0d 0a 00 73 79 6d 62 6f | by the |...symbo|
|000009a0| 6c 73 20 27 20 61 6e 64 | 20 22 2c 20 72 65 73 70 |ls ' and| ", resp|
|000009b0| 65 63 74 69 76 65 6c 79 | 2e 20 20 4f 6e 65 20 6d |ectively|. One m|
|000009c0| 69 6e 75 74 65 20 69 73 | 20 65 71 75 61 6c 20 74 |inute is| equal t|
|000009d0| 6f 20 31 2f 36 30 20 6f | 66 20 61 20 64 65 67 72 |o 1/60 o|f a degr|
|000009e0| 65 65 2c 20 61 6e 64 20 | 0d 0a 00 6f 6e 65 20 73 |ee, and |...one s|
|000009f0| 65 63 6f 6e 64 20 69 73 | 20 65 71 75 61 6c 20 74 |econd is| equal t|
|00000a00| 6f 20 31 2f 36 30 20 6f | 66 20 61 20 6d 69 6e 75 |o 1/60 o|f a minu|
|00000a10| 74 65 20 28 6f 72 20 31 | 2f 33 36 30 30 20 6f 66 |te (or 1|/3600 of|
|00000a20| 20 61 20 64 65 67 72 65 | 65 29 2e 0d 0a 00 0d 0a | a degre|e)......|
|00000a30| 00 54 68 65 20 72 65 6c | 61 74 69 6f 6e 73 68 69 |.The rel|ationshi|
|00000a40| 70 20 62 65 74 77 65 65 | 6e 20 74 68 65 20 71 75 |p betwee|n the qu|
|00000a50| 61 64 72 61 6e 74 20 74 | 68 65 20 74 65 72 6d 69 |adrant t|he termi|
|00000a60| 6e 61 6c 20 73 69 64 65 | 20 6c 69 65 73 20 69 6e |nal side| lies in|
|00000a70| 20 61 6e 64 20 74 68 65 | 20 0d 0a 00 64 65 67 72 | and the| ...degr|
|00000a80| 65 65 20 6d 65 61 73 75 | 72 65 20 6f 66 20 61 6e |ee measu|re of an|
|00000a90| 20 61 6e 67 6c 65 20 69 | 6e 20 73 74 61 6e 64 61 | angle i|n standa|
|00000aa0| 72 64 20 70 6f 73 69 74 | 69 6f 6e 20 69 73 20 73 |rd posit|ion is s|
|00000ab0| 75 6d 6d 61 72 69 7a 65 | 64 20 62 65 6c 6f 77 2e |ummarize|d below.|
|00000ac0| 0d 0a 00 0d 0b 00 20 20 | 20 20 20 11 33 51 75 61 |...... | .3Qua|
|00000ad0| 64 72 61 6e 74 20 20 20 | 20 20 41 73 73 6f 63 69 |drant | Associ|
|00000ae0| 61 74 65 64 20 41 6e 67 | 6c 65 20 11 34 74 0d 0b |ated Ang|le .4t..|
|00000af0| 00 20 20 20 20 20 32 32 | 32 32 32 32 32 32 20 20 |. 22|222222 |
|00000b00| 20 20 20 32 32 32 32 32 | 32 32 32 32 32 32 32 32 | 22222|22222222|
|00000b10| 32 32 32 32 32 0d 0b 00 | 20 20 20 20 20 20 20 20 |22222...| |
|00000b20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 6f 20 | | o |
|00000b30| 20 20 20 20 20 20 20 20 | 6f 0d 0b 00 20 20 20 20 | |o... |
|00000b40| 20 20 20 20 11 31 49 20 | 20 20 20 20 20 20 20 20 | .1I | |
|00000b50| 20 20 20 30 20 20 3c 20 | 11 34 74 20 11 31 3c 20 | 0 < |.4t .1< |
|00000b60| 39 30 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |90... | |
|00000b70| 20 20 20 20 20 20 20 20 | 20 20 20 11 34 6f 20 20 | | .4o |
|00000b80| 20 20 20 20 20 20 20 20 | 6f 0d 0b 00 20 20 20 20 | |o... |
|00000b90| 20 20 20 20 11 31 49 49 | 20 20 20 20 20 20 20 20 | .1II| |
|00000ba0| 20 20 11 33 39 30 20 20 | 3c 20 11 34 74 20 11 33 | .390 |< .4t .3|
|00000bb0| 3c 20 31 38 30 0d 0a 00 | 20 20 20 20 20 20 20 20 |< 180...| |
|00000bc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 34 | | .4|
|00000bd0| 6f 20 20 20 20 20 20 20 | 20 20 20 6f 0d 0b 00 20 |o | o... |
|00000be0| 20 20 20 20 20 20 20 11 | 31 49 49 49 20 20 20 20 | .|1III |
|00000bf0| 20 20 20 20 11 33 31 38 | 30 20 20 3c 20 11 34 74 | .318|0 < .4t|
|00000c00| 20 11 33 3c 20 32 37 30 | 0d 0a 00 20 20 20 20 20 | .3< 270|... |
|00000c10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000c20| 20 11 34 6f 20 20 20 20 | 20 20 20 20 20 20 6f 0d | .4o | o.|
|00000c30| 0b 00 20 20 20 20 20 20 | 20 20 11 31 49 56 20 20 |.. | .1IV |
|00000c40| 20 20 20 20 20 20 20 11 | 33 32 37 30 20 20 3c 20 | .|3270 < |
|00000c50| 11 34 74 20 11 33 3c 20 | 33 36 30 0d 0a 00 53 65 |.4t .3< |360...Se|
|00000c60| 63 74 69 6f 6e 20 36 2e | 31 20 20 41 6e 67 6c 65 |ction 6.|1 Angle|
|00000c70| 73 20 61 6e 64 20 54 68 | 65 69 72 20 4d 65 61 73 |s and Th|eir Meas|
|00000c80| 75 72 65 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |ure | |
|00000c90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00000ca0| 34 6f 20 20 20 20 20 20 | 20 6f 20 20 20 20 20 20 |4o | o |
|00000cb0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000cc0| 20 20 20 20 20 20 20 20 | 20 6f 0d 0b 00 11 31 57 | | o....1W|
|00000cd0| 65 20 63 6c 61 73 73 69 | 66 79 20 61 6e 67 6c 65 |e classi|fy angle|
|00000ce0| 73 20 62 65 74 77 65 65 | 6e 20 30 20 20 61 6e 64 |s betwee|n 0 and|
|00000cf0| 20 39 30 20 20 61 73 20 | 12 31 61 63 75 74 65 12 | 90 as |.1acute.|
|00000d00| 30 20 61 6e 64 20 61 6e | 67 6c 65 73 20 62 65 74 |0 and an|gles bet|
|00000d10| 77 65 65 6e 20 39 30 20 | 20 61 6e 64 20 0d 0a 00 |ween 90 | and ...|
|00000d20| 20 20 20 11 34 6f 20 20 | 20 20 20 20 20 20 20 20 | .4o | |
|00000d30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d40| 20 6f 0d 0b 00 11 31 31 | 38 30 20 20 61 73 20 12 | o....11|80 as .|
|00000d50| 31 6f 62 74 75 73 65 12 | 30 2e 20 20 41 6e 20 61 |1obtuse.|0. An a|
|00000d60| 6e 67 6c 65 20 6f 66 20 | 39 30 20 20 69 73 20 63 |ngle of |90 is c|
|00000d70| 61 6c 6c 65 64 20 61 20 | 12 31 72 69 67 68 74 20 |alled a |.1right |
|00000d80| 61 6e 67 6c 65 12 30 2c | 20 77 68 69 6c 65 20 61 |angle.0,| while a|
|00000d90| 6e 20 61 6e 67 6c 65 20 | 0d 0a 00 20 20 20 20 20 |n angle |... |
|00000da0| 20 11 34 6f 20 20 20 20 | 20 20 20 20 20 20 20 20 | .4o | |
|00000db0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000dc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 6f | | o|
|00000dd0| 0d 0b 00 11 31 6f 66 20 | 31 38 30 20 20 69 73 20 |....1of |180 is |
|00000de0| 63 61 6c 6c 65 64 20 61 | 20 12 31 73 74 72 61 69 |called a| .1strai|
|00000df0| 67 68 74 20 61 6e 67 6c | 65 12 30 2e 20 20 4e 6f |ght angl|e.0. No|
|00000e00| 74 65 20 74 68 61 74 20 | 33 36 30 20 20 69 6e 64 |te that |360 ind|
|00000e10| 69 63 61 74 65 73 20 61 | 20 66 75 6c 6c 20 72 65 |icates a| full re|
|00000e20| 76 6f 2d 0d 0a 00 0d 0b | 00 6c 75 74 69 6f 6e 2c |vo-.....|.lution,|
|00000e30| 20 73 6f 20 74 68 61 74 | 20 74 68 65 20 69 6e 69 | so that| the ini|
|00000e40| 74 69 61 6c 20 61 6e 64 | 20 74 65 72 6d 69 6e 61 |tial and| termina|
|00000e50| 6c 20 73 69 64 65 73 20 | 63 6f 69 6e 63 69 64 65 |l sides |coincide|
|00000e60| 2e 0d 0a 00 53 65 63 74 | 69 6f 6e 20 36 2e 31 20 |....Sect|ion 6.1 |
|00000e70| 20 41 6e 67 6c 65 73 20 | 61 6e 64 20 54 68 65 69 | Angles |and Thei|
|00000e80| 72 20 4d 65 61 73 75 72 | 65 0d 0b 00 54 77 6f 20 |r Measur|e...Two |
|00000e90| 61 6e 67 6c 65 73 20 61 | 72 65 20 73 61 69 64 20 |angles a|re said |
|00000ea0| 74 6f 20 62 65 20 12 31 | 63 6f 74 65 72 6d 69 6e |to be .1|cotermin|
|00000eb0| 61 6c 12 30 20 69 66 20 | 74 68 65 79 20 68 61 76 |al.0 if |they hav|
|00000ec0| 65 20 74 68 65 20 73 61 | 6d 65 20 69 6e 69 74 69 |e the sa|me initi|
|00000ed0| 61 6c 20 61 6e 64 20 0d | 0a 00 74 65 72 6d 69 6e |al and .|..termin|
|00000ee0| 61 6c 20 73 69 64 65 73 | 2e 20 20 28 4e 6f 74 65 |al sides|. (Note|
|00000ef0| 20 74 68 61 74 20 69 74 | 20 64 6f 65 73 20 6e 6f | that it| does no|
|00000f00| 74 20 6d 61 74 74 65 72 | 20 68 6f 77 20 6d 61 6e |t matter| how man|
|00000f10| 79 20 72 65 76 6f 6c 75 | 74 69 6f 6e 73 20 69 74 |y revolu|tions it|
|00000f20| 20 74 61 6b 65 73 20 0d | 0a 00 74 6f 20 72 65 61 | takes .|..to rea|
|00000f30| 63 68 20 74 68 65 20 74 | 65 72 6d 69 6e 61 6c 20 |ch the t|erminal |
|00000f40| 73 69 64 65 2c 20 6e 6f | 72 20 64 6f 65 73 20 74 |side, no|r does t|
|00000f50| 68 65 20 64 69 72 65 63 | 74 69 6f 6e 20 6f 66 20 |he direc|tion of |
|00000f60| 72 6f 74 61 74 69 6f 6e | 20 6d 61 74 74 65 72 2e |rotation| matter.|
|00000f70| 29 0d 0a 00 0d 0a 00 46 | 6f 72 20 70 6f 73 69 74 |)......F|or posit|
|00000f80| 69 76 65 20 61 6e 67 6c | 65 73 2c 20 77 65 20 63 |ive angl|es, we c|
|00000f90| 61 6e 20 69 64 65 6e 74 | 69 66 79 20 6f 74 68 65 |an ident|ify othe|
|00000fa0| 72 20 72 65 6c 61 74 69 | 6f 6e 73 68 69 70 73 20 |r relati|onships |
|00000fb0| 62 65 74 77 65 65 6e 20 | 74 77 6f 20 61 6e 67 6c |between |two angl|
|00000fc0| 65 73 20 0d 0a 00 20 20 | 20 20 20 20 20 20 20 20 |es ... | |
|00000fd0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000fe0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ff0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001000| 20 20 20 20 20 20 20 20 | 20 20 11 34 6f 0d 0b 00 | | .4o...|
|00001010| 11 31 62 61 73 65 64 20 | 6f 6e 20 74 68 65 69 72 |.1based |on their|
|00001020| 20 73 75 6d 2e 20 20 49 | 66 20 74 68 65 20 73 75 | sum. I|f the su|
|00001030| 6d 20 6f 66 20 74 77 6f | 20 70 6f 73 69 74 69 76 |m of two| positiv|
|00001040| 65 20 61 6e 67 6c 65 73 | 20 11 34 61 20 11 31 61 |e angles| .4a .1a|
|00001050| 6e 64 20 11 34 62 20 11 | 31 69 73 20 39 30 20 2c |nd .4b .|1is 90 ,|
|00001060| 20 74 68 65 6e 20 11 34 | 61 20 0d 0a 00 11 31 61 | then .4|a ....1a|
|00001070| 6e 64 20 11 34 62 20 11 | 31 61 72 65 20 73 61 69 |nd .4b .|1are sai|
|00001080| 64 20 74 6f 20 62 65 20 | 12 31 63 6f 6d 70 6c 65 |d to be |.1comple|
|00001090| 6d 65 6e 74 61 72 79 12 | 30 20 28 63 6f 6d 70 6c |mentary.|0 (compl|
|000010a0| 65 6d 65 6e 74 73 20 6f | 66 20 65 61 63 68 20 6f |ements o|f each o|
|000010b0| 74 68 65 72 29 2e 20 20 | 53 69 6d 69 6c 61 72 6c |ther). |Similarl|
|000010c0| 79 2c 20 69 66 0d 0a 00 | 20 20 20 20 20 20 20 20 |y, if...| |
|000010d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000010e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000010f0| 20 20 20 20 20 11 34 6f | 0d 0b 00 11 31 74 68 65 | .4o|....1the|
|00001100| 20 73 75 6d 20 6f 66 20 | 74 77 6f 20 70 6f 73 69 | sum of |two posi|
|00001110| 74 69 76 65 20 61 6e 67 | 6c 65 73 20 11 34 61 20 |tive ang|les .4a |
|00001120| 11 31 61 6e 64 20 11 34 | 62 20 11 31 69 73 20 31 |.1and .4|b .1is 1|
|00001130| 38 30 20 2c 20 74 68 65 | 6e 20 11 34 61 20 11 31 |80 , the|n .4a .1|
|00001140| 61 6e 64 20 11 34 62 20 | 11 31 61 72 65 20 73 61 |and .4b |.1are sa|
|00001150| 69 64 20 74 6f 20 62 65 | 20 0d 0a 00 12 31 73 75 |id to be| ....1su|
|00001160| 70 70 6c 65 6d 65 6e 74 | 61 72 79 12 30 20 28 73 |pplement|ary.0 (s|
|00001170| 75 70 70 6c 65 6d 65 6e | 74 73 20 6f 66 20 65 61 |upplemen|ts of ea|
|00001180| 63 68 20 6f 74 68 65 72 | 29 2e 0d 0a 00 53 65 63 |ch other|)....Sec|
|00001190| 74 69 6f 6e 20 36 2e 31 | 20 20 41 6e 67 6c 65 73 |tion 6.1| Angles|
|000011a0| 20 61 6e 64 20 54 68 65 | 69 72 20 4d 65 61 73 75 | and The|ir Measu|
|000011b0| 72 65 0d 0b 00 48 69 73 | 74 6f 72 69 63 61 6c 6c |re...His|toricall|
|000011c0| 79 2c 20 64 65 67 72 65 | 65 20 6d 65 61 73 75 72 |y, degre|e measur|
|000011d0| 65 20 77 61 73 20 74 68 | 65 20 6d 6f 73 74 20 69 |e was th|e most i|
|000011e0| 6d 70 6f 72 74 61 6e 74 | 20 66 6f 72 6d 20 6f 66 |mportant| form of|
|000011f0| 20 61 6e 67 6c 65 20 6d | 65 61 73 75 72 65 20 0d | angle m|easure .|
|00001200| 0a 00 75 6e 74 69 6c 20 | 63 61 6c 63 75 6c 75 73 |..until |calculus|
|00001210| 20 61 70 70 6c 69 63 61 | 74 69 6f 6e 73 20 62 65 | applica|tions be|
|00001220| 67 61 6e 20 74 6f 20 62 | 65 20 64 65 76 65 6c 6f |gan to b|e develo|
|00001230| 70 65 64 2e 20 20 43 61 | 6c 63 75 6c 75 73 20 73 |ped. Ca|lculus s|
|00001240| 74 72 65 73 73 65 73 20 | 61 6e 6f 74 68 65 72 20 |tresses |another |
|00001250| 0d 0a 00 66 6f 72 6d 20 | 6f 66 20 61 6e 67 6c 65 |...form |of angle|
|00001260| 20 6d 65 61 73 75 72 65 | 20 63 61 6c 6c 65 64 20 | measure| called |
|00001270| 12 31 72 61 64 69 61 6e | 20 6d 65 61 73 75 72 65 |.1radian| measure|
|00001280| 12 30 2e 20 20 46 6f 72 | 6d 61 6c 6c 79 2c 20 6f |.0. For|mally, o|
|00001290| 6e 65 20 12 31 72 61 64 | 69 61 6e 12 30 20 69 73 |ne .1rad|ian.0 is|
|000012a0| 20 74 68 65 20 0d 0a 00 | 6d 65 61 73 75 72 65 20 | the ...|measure |
|000012b0| 6f 66 20 61 20 63 65 6e | 74 72 61 6c 20 61 6e 67 |of a cen|tral ang|
|000012c0| 6c 65 20 11 34 74 20 11 | 31 74 68 61 74 20 69 6e |le .4t .|1that in|
|000012d0| 74 65 72 63 65 70 74 73 | 20 28 73 75 62 74 65 6e |tercepts| (subten|
|000012e0| 64 73 29 20 61 6e 20 61 | 72 63 20 11 33 73 20 11 |ds) an a|rc .3s .|
|000012f0| 31 65 71 75 61 6c 20 69 | 6e 20 0d 0a 00 6c 65 6e |1equal i|n ...len|
|00001300| 67 74 68 20 74 6f 20 74 | 68 65 20 72 61 64 69 75 |gth to t|he radiu|
|00001310| 73 20 11 33 72 20 11 31 | 6f 66 20 74 68 65 20 63 |s .3r .1|of the c|
|00001320| 69 72 63 6c 65 2e 20 20 | 49 6e 66 6f 72 6d 61 6c |ircle. |Informal|
|00001330| 6c 79 2c 20 77 65 20 63 | 61 6e 20 6e 6f 74 65 20 |ly, we c|an note |
|00001340| 66 72 6f 6d 20 74 68 65 | 20 64 65 66 69 6e 2d 0d |from the| defin-.|
|00001350| 0a 00 74 69 6f 6e 20 74 | 68 61 74 20 61 20 66 75 |..tion t|hat a fu|
|00001360| 6c 6c 20 72 65 76 6f 6c | 75 74 69 6f 6e 20 69 73 |ll revol|ution is|
|00001370| 20 32 11 34 70 20 11 31 | 72 61 64 69 61 6e 73 2e | 2.4p .1|radians.|
|00001380| 20 20 52 61 64 69 61 6e | 20 6d 65 61 73 75 72 65 | Radian| measure|
|00001390| 20 69 6e 64 69 63 61 74 | 65 73 20 61 20 72 61 74 | indicat|es a rat|
|000013a0| 69 6f 20 0d 0a 00 61 6e | 64 20 64 6f 65 73 20 6e |io ...an|d does n|
|000013b0| 6f 74 20 68 61 76 65 20 | 61 6e 79 20 75 6e 69 74 |ot have |any unit|
|000013c0| 73 2c 20 73 6f 20 77 65 | 20 75 73 75 61 6c 6c 79 |s, so we| usually|
|000013d0| 20 6a 75 73 74 20 72 65 | 66 65 72 20 74 6f 20 11 | just re|fer to .|
|000013e0| 34 74 20 11 31 3d 20 32 | 11 34 70 20 11 31 72 61 |4t .1= 2|.4p .1ra|
|000013f0| 64 69 61 6e 73 20 61 73 | 20 0d 0a 00 73 69 6d 70 |dians as| ...simp|
|00001400| 6c 79 20 11 34 74 20 11 | 31 3d 20 32 11 34 70 11 |ly .4t .|1= 2.4p.|
|00001410| 31 2e 0d 0a 00 53 65 63 | 74 69 6f 6e 20 36 2e 31 |1....Sec|tion 6.1|
|00001420| 20 20 41 6e 67 6c 65 73 | 20 61 6e 64 20 54 68 65 | Angles| and The|
|00001430| 69 72 20 4d 65 61 73 75 | 72 65 20 20 20 20 20 20 |ir Measu|re |
|00001440| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001450| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001460| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00001470| 34 6f 0d 0b 00 11 31 53 | 69 6e 63 65 20 61 6e 20 |4o....1S|ince an |
|00001480| 61 6e 67 6c 65 20 6f 66 | 20 6f 6e 65 20 66 75 6c |angle of| one ful|
|00001490| 6c 20 72 65 76 6f 6c 75 | 74 69 6f 6e 20 68 61 73 |l revolu|tion has|
|000014a0| 20 6d 65 61 73 75 72 65 | 20 33 36 30 20 20 6f 72 | measure| 360 or|
|000014b0| 20 32 11 34 70 20 11 31 | 72 61 64 69 61 6e 73 2c | 2.4p .1|radians,|
|000014c0| 20 77 65 20 63 61 6e 20 | 0d 0a 00 64 65 76 65 6c | we can |...devel|
|000014d0| 6f 70 20 12 31 63 6f 6e | 76 65 72 73 69 6f 6e 20 |op .1con|version |
|000014e0| 72 75 6c 65 73 12 30 20 | 66 6f 72 20 64 65 67 72 |rules.0 |for degr|
|000014f0| 65 65 73 20 74 6f 20 72 | 61 64 69 61 6e 73 20 61 |ees to r|adians a|
|00001500| 6e 64 20 76 69 63 65 20 | 76 65 72 73 61 2e 0d 0a |nd vice |versa...|
|00001510| 00 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |.... | |
|00001520| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001530| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001540| 20 20 20 20 20 20 20 20 | 20 20 20 11 34 70 20 11 | | .4p .|
|00001550| 31 72 61 64 69 61 6e 73 | 0d 0b 00 20 31 2e 20 54 |1radians|... 1. T|
|00001560| 6f 20 63 6f 6e 76 65 72 | 74 20 64 65 67 72 65 65 |o conver|t degree|
|00001570| 73 20 74 6f 20 72 61 64 | 69 61 6e 73 2c 20 6d 75 |s to rad|ians, mu|
|00001580| 6c 74 69 70 6c 79 20 64 | 65 67 72 65 65 73 20 62 |ltiply d|egrees b|
|00001590| 79 20 11 34 32 32 32 32 | 32 32 32 32 32 11 31 2e |y .42222|22222.1.|
|000015a0| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|000015b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000015c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000015d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000015e0| 11 34 6f 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |.4o... | |
|000015f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001600| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001610| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001620| 11 31 31 38 30 0d 0a 00 | 20 20 20 20 20 20 20 20 |.1180...| |
|00001630| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001640| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001650| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001660| 20 20 20 20 20 11 34 6f | 0d 0b 00 20 20 20 20 20 | .4o|... |
|00001670| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001680| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001690| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000016a0| 20 20 20 20 20 11 31 31 | 38 30 0d 0b 00 20 32 2e | .11|80... 2.|
|000016b0| 20 54 6f 20 63 6f 6e 76 | 65 72 74 20 72 61 64 69 | To conv|ert radi|
|000016c0| 61 6e 73 20 74 6f 20 64 | 65 67 72 65 65 73 2c 20 |ans to d|egrees, |
|000016d0| 6d 75 6c 74 69 70 6c 79 | 20 72 61 64 69 61 6e 73 |multiply| radians|
|000016e0| 20 62 79 20 11 34 32 32 | 32 32 32 32 32 32 32 11 | by .422|2222222.|
|000016f0| 31 2e 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |1.... | |
|00001700| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001710| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001720| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 34 70 20 | | .4p |
|00001730| 11 31 72 61 64 69 61 6e | 73 0d 0a 00 0d 0b 00 49 |.1radian|s......I|
|00001740| 66 20 79 6f 75 20 68 61 | 76 65 20 74 72 6f 75 62 |f you ha|ve troub|
|00001750| 6c 65 20 6d 65 6d 6f 72 | 69 7a 69 6e 67 20 72 75 |le memor|izing ru|
|00001760| 6c 65 73 2c 20 79 6f 75 | 20 63 61 6e 20 73 69 6d |les, you| can sim|
|00001770| 70 6c 79 20 72 65 6d 65 | 6d 62 65 72 20 74 68 65 |ply reme|mber the|
|00001780| 20 72 65 6c 61 74 69 6f | 6e 2d 0d 0a 00 20 20 20 | relatio|n-... |
|00001790| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000017a0| 20 11 34 6f 0d 0b 00 11 | 31 73 68 69 70 20 11 34 | .4o....|1ship .4|
|000017b0| 70 20 11 31 72 61 64 69 | 61 6e 73 20 3d 20 31 38 |p .1radi|ans = 18|
|000017c0| 30 20 2e 0d 0a 00 53 65 | 63 74 69 6f 6e 20 36 2e |0 ....Se|ction 6.|
|000017d0| 31 20 20 41 6e 67 6c 65 | 73 20 61 6e 64 20 54 68 |1 Angle|s and Th|
|000017e0| 65 69 72 20 4d 65 61 73 | 75 72 65 0d 0b 00 54 68 |eir Meas|ure...Th|
|000017f0| 65 20 72 61 64 69 61 6e | 20 6d 65 61 73 75 72 65 |e radian| measure|
|00001800| 20 66 6f 72 6d 75 6c 61 | 2c 20 11 34 74 20 11 31 | formula|, .4t .1|
|00001810| 3d 20 11 33 73 11 31 2f | 11 33 72 11 31 2c 20 63 |= .3s.1/|.3r.1, c|
|00001820| 61 6e 20 62 65 20 75 73 | 65 64 20 74 6f 20 6d 65 |an be us|ed to me|
|00001830| 61 73 75 72 65 20 61 72 | 63 20 6c 65 6e 67 74 68 |asure ar|c length|
|00001840| 20 61 6c 6f 6e 67 20 61 | 0d 0a 00 63 69 72 63 6c | along a|...circl|
|00001850| 65 2e 20 20 53 70 65 63 | 69 66 69 63 61 6c 6c 79 |e. Spec|ifically|
|00001860| 2c 20 66 6f 72 20 61 20 | 63 69 72 63 6c 65 20 6f |, for a |circle o|
|00001870| 66 20 72 61 64 69 75 73 | 20 11 33 72 11 31 2c 20 |f radius| .3r.1, |
|00001880| 61 20 63 65 6e 74 72 61 | 6c 20 61 6e 67 6c 65 20 |a centra|l angle |
|00001890| 11 34 74 20 11 31 69 6e | 74 65 72 63 65 70 74 73 |.4t .1in|tercepts|
|000018a0| 0d 0a 00 61 6e 20 61 72 | 63 20 6f 66 20 6c 65 6e |...an ar|c of len|
|000018b0| 67 74 68 20 11 33 73 20 | 11 31 67 69 76 65 6e 20 |gth .3s |.1given |
|000018c0| 62 79 0d 0a 00 20 20 20 | 20 20 11 33 73 20 11 31 |by... | .3s .1|
|000018d0| 3d 20 11 33 72 11 34 74 | 0d 0a 00 11 31 77 68 65 |= .3r.4t|....1whe|
|000018e0| 72 65 20 11 34 74 20 11 | 31 69 73 20 6d 65 61 73 |re .4t .|1is meas|
|000018f0| 75 72 65 64 20 69 6e 20 | 72 61 64 69 61 6e 73 2e |ured in |radians.|
|00001900| 20 20 54 68 65 20 66 6f | 72 6d 75 6c 61 20 66 6f | The fo|rmula fo|
|00001910| 72 20 74 68 65 20 6c 65 | 6e 67 74 68 20 6f 66 20 |r the le|ngth of |
|00001920| 61 20 63 69 72 63 75 6c | 61 72 20 61 72 63 0d 0a |a circul|ar arc..|
|00001930| 00 63 61 6e 20 62 65 20 | 75 73 65 64 20 74 6f 20 |.can be |used to |
|00001940| 61 6e 61 6c 79 7a 65 20 | 74 68 65 20 6d 6f 74 69 |analyze |the moti|
|00001950| 6f 6e 20 6f 66 20 61 20 | 70 61 72 74 69 63 6c 65 |on of a |particle|
|00001960| 20 6d 6f 76 69 6e 67 20 | 61 74 20 61 20 63 6f 6e | moving |at a con|
|00001970| 73 74 61 6e 74 20 73 70 | 65 65 64 20 0d 0a 00 61 |stant sp|eed ...a|
|00001980| 6c 6f 6e 67 20 61 20 63 | 69 72 63 75 6c 61 72 20 |long a c|ircular |
|00001990| 70 61 74 68 2e 20 20 43 | 6f 6e 73 69 64 65 72 20 |path. C|onsider |
|000019a0| 61 20 63 69 72 63 6c 65 | 20 6f 66 20 72 61 64 69 |a circle| of radi|
|000019b0| 75 73 20 11 33 72 11 31 | 2e 20 20 49 66 20 11 33 |us .3r.1|. If .3|
|000019c0| 73 20 11 31 69 73 20 74 | 68 65 20 6c 65 6e 67 74 |s .1is t|he lengt|
|000019d0| 68 20 6f 66 0d 0a 00 74 | 68 65 20 61 72 63 20 74 |h of...t|he arc t|
|000019e0| 72 61 76 65 6c 65 64 20 | 69 6e 20 74 69 6d 65 20 |raveled |in time |
|000019f0| 11 33 74 11 31 2c 20 74 | 68 65 6e 20 74 68 65 20 |.3t.1, t|hen the |
|00001a00| 12 31 73 70 65 65 64 12 | 30 20 6f 66 20 74 68 65 |.1speed.|0 of the|
|00001a10| 20 70 61 72 74 69 63 6c | 65 20 69 73 20 0d 0a 00 | particl|e is ...|
|00001a20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 44 69 73 | | Dis|
|00001a30| 74 61 6e 63 65 20 20 20 | 11 33 73 0d 0b 00 20 20 |tance |.3s... |
|00001a40| 20 20 20 11 31 53 70 65 | 65 64 20 3d 20 11 34 32 | .1Spe|ed = .42|
|00001a50| 32 32 32 32 32 32 32 20 | 11 31 3d 20 11 34 32 11 |2222222 |.1= .42.|
|00001a60| 31 2e 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |1.... | |
|00001a70| 20 20 20 20 54 69 6d 65 | 20 20 20 20 20 11 33 74 | Time| .3t|
|00001a80| 0d 0a 00 0d 0b 00 11 31 | 4d 6f 72 65 6f 76 65 72 |.......1|Moreover|
|00001a90| 2c 20 69 66 20 11 34 74 | 20 11 31 69 73 20 74 68 |, if .4t| .1is th|
|00001aa0| 65 20 61 6e 67 6c 65 20 | 28 69 6e 20 72 61 64 69 |e angle |(in radi|
|00001ab0| 61 6e 20 6d 65 61 73 75 | 72 65 29 20 63 6f 72 72 |an measu|re) corr|
|00001ac0| 65 73 70 6f 6e 64 69 6e | 67 20 74 6f 20 74 68 65 |espondin|g to the|
|00001ad0| 20 61 72 63 20 0d 0a 00 | 6c 65 6e 67 74 68 20 11 | arc ...|length .|
|00001ae0| 33 73 11 31 2c 20 74 68 | 65 6e 20 74 68 65 20 12 |3s.1, th|en the .|
|00001af0| 31 61 6e 67 75 6c 61 72 | 20 73 70 65 65 64 12 30 |1angular| speed.0|
|00001b00| 20 6f 66 20 74 68 65 20 | 70 61 72 74 69 63 6c 65 | of the |particle|
|00001b10| 20 69 73 0d 0a 00 20 20 | 20 20 20 20 20 20 20 20 | is... | |
|00001b20| 20 20 20 20 20 20 20 20 | 20 20 20 11 34 74 0d 0b | | .4t..|
|00001b30| 00 20 20 20 20 20 11 31 | 41 6e 67 75 6c 61 72 20 |. .1|Angular |
|00001b40| 73 70 65 65 64 20 3d 20 | 11 34 32 11 31 2e 20 20 |speed = |.42.1. |
|00001b50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001b60| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001b70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001b80| 20 20 20 20 20 20 20 20 | 20 20 20 0d 0b 00 20 20 | | ... |
|00001b90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001ba0| 20 20 20 11 33 74 20 20 | 20 20 20 20 20 20 20 20 | .3t | |
|00001bb0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001bc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001bd0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001be0| 20 20 20 20 11 31 2e 0d | 0a 00 27 00 00 00 bc 02 | .1..|..'.....|
|00001bf0| 00 00 4d 17 00 00 10 00 | 00 00 00 00 00 00 63 68 |..M.....|......ch|
|00001c00| 61 70 36 00 08 03 00 00 | 79 01 00 00 4d 25 00 00 |ap6.....|y...M%..|
|00001c10| e3 02 00 00 00 00 00 00 | 73 36 2d 31 00 a6 04 00 |........|s6-1....|
|00001c20| 00 e7 02 00 00 4d 25 00 | 00 81 04 00 00 00 00 00 |.....M%.|........|
|00001c30| 00 73 36 2d 31 2d 31 00 | b2 07 00 00 ac 04 00 00 |.s6-1-1.|........|
|00001c40| 4d 25 00 00 8d 07 00 00 | 00 00 00 00 73 36 2d 31 |M%......|....s6-1|
|00001c50| 2d 32 00 83 0c 00 00 e1 | 01 00 00 4d 25 00 00 5e |-2......|...M%..^|
|00001c60| 0c 00 00 00 00 00 00 73 | 36 2d 31 2d 33 00 89 0e |.......s|6-1-3...|
|00001c70| 00 00 04 03 00 00 4d 25 | 00 00 64 0e 00 00 00 00 |......M%|..d.....|
|00001c80| 00 00 73 36 2d 31 2d 34 | 00 b2 11 00 00 63 02 00 |..s6-1-4|.....c..|
|00001c90| 00 4d 25 00 00 8d 11 00 | 00 00 00 00 00 73 36 2d |.M%.....|.....s6-|
|00001ca0| 31 2d 35 00 3a 14 00 00 | 8c 03 00 00 4d 25 00 00 |1-5.:...|....M%..|
|00001cb0| 15 14 00 00 00 00 00 00 | 73 36 2d 31 2d 36 00 eb |........|s6-1-6..|
|00001cc0| 17 00 00 ff 03 00 00 4d | 25 00 00 c6 17 00 00 00 |.......M|%.......|
|00001cd0| 00 00 00 73 36 2d 31 2d | 37 00 |...s6-1-|7. |
+--------+-------------------------+-------------------------+--------+--------+